High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod

Zhuangqiang Gao,† Kaichao Deng,† Xu-Dong Wang,‡ Manuel Miro,§ and Dianping Tang*†

†Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
‡Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
§FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, 07122 Palma de Mallorca, Illes Balears, Spain

ABSTRACT: Nanostructure-based visual assay has been developed for determination of enzymatic activity, but most involve in poor visible color resolution and are not suitable for routine utilization. Herein, we designed a high-resolution colorimetric protocol based on gold/silver core/shell nanorod for visual readout of alkaline phosphatase (ALP) activity by using bare-eyes. The method relied on enzymatic reaction-assisted silver deposition on gold nanorod to generate significant color change, which was strongly dependent on ALP activity. Upon target ALP introduction into the substrate, the ascorbic acid 2-phosphate was hydrolyzed to form ascorbic acid, and then, the generated ascorbic acid reduced silver ion to metal silver and coated on the gold nanorod, thereby resulting in the blue shift of longitudinal localized surface plasmon resonance peak of gold nanorod accompanying a perceptible color change from red to orange to yellow to green to cyan to blue and to violet. Under optimal conditions, the designed method exhibited the wide linear range 5−100 mU mL⁻¹ ALP with a detection limit of 3.3 mU mL⁻¹. Moreover, it could be used for the semiquantitative detection of ALP from 20 to 500 mU mL⁻¹ by using the bare-eyes. The coefficients of variation for intra- and interassay were below 3.5% and 6.2%, respectively. Finally, this method was validated for the analysis of real-life serum samples, giving results matched well with those from the 4-nitrophenyl phosphate disodium salt hexahydrate (pNPP)-based standard method. In addition, the system could even be utilized in the enzyme-linked immunosorbent assay (ELISA) to detect IgG at picomol concentration. With the merits of simplification, low cost, user-friendliness, and sensitive readout, the gold nanorod-based colorimetric assay has the potential to be utilized by the public and opens a new horizon for bioassays.

KEYWORDS: alkaline phosphatase, gold nanorod, localized surface plasmon resonance, high-resolution colorimetric assay, bare-eyes

1. INTRODUCTION

Enzymatic reactions play major roles in nearly every living organism. Even in a single cell, there exist thousands of enzymatic reactions to provide resources and energy for normal metabolism and proliferation.1,2 All the enzymatic reactions are precisely controlled similar to a well-programmed machine. The dysfunction of each enzymatic reaction may induce severe diseases and even may threaten a cell’s life. One of the major causes of the dysfunction is the changing of enzyme activity.1,3 Therefore, the measurement and monitoring of enzymatic activity in biological fluids has become increasingly important. Up to now, many approaches have been developed for this purpose based on various techniques including fluorescence, chemiluminescence, Raman, and electrochemistry.4−7 Despite their high sensitivity and selectivity, these assays have some limitations including the use of sophisticated instruments with complicated data-collecting/or -processing systems, and a relatively long analysis time, thereby limiting their wide acceptance.8,9 For example, fluorescence resonance energy transfer is widely employed for enzymatic activity assays. However, it often involves the pair of fluorescence label and quencher.4 In contrast, colorimetric assays display obvious advantages due to their simplicity, convenience, practicality, low cost, and rapid/direct readout using bare-eyes.10−12 Generally, conventional colorimetric assays are based upon the specific reaction between certain enzyme and the corresponding substrate or chromogenic agents to generate color change.13−15 Unfortunately, most of them suffer from low color resolution.
and thus only serve as a rough estimation. Hence, the exploration of novel colorimetric assay protocols for visual monitoring of enzyme activities with high color resolution and high sensitivity is of great significance.

Plasmonic noble metal (e.g., gold and silver) nanostructures attract substantial research interest yesteryears due to their rich, intriguing, and complex optical properties originating from the excitation of surface plasmon resonances. Among these metallic nanostructures, gold nanorod (AuNR) holds great potential as the next-generation of plasmonic transducer in assays and sensor systems because of its elongated nanostructure, sharp/polarized near-infrared resonance, and tunable plasmon resonant spectra. In particular, its localized surface plasmon resonance (LSPR) absorption is extremely sensitive to the size, composition, distance, and the surrounding media, based on which great progress in colorimetric sensors have been made. Recent experiments have demonstrated that the LSPR absorption of AuNR could be precisely tuned by depositing silver nanoshell on their surface, which can lead to apparent multicolor change. This phenomenon has been successfully proved to be highly useful in chemical sensing systems for monitoring time, temperature, and food freshness. However, the application of the intriguing phenomenon for the detection of biomolecules in real-life biological samples is still scarce.

Herein, we explore the fascinating phenomenon to design a simple but effective strategy for direct readout of phosphatase activity by using bare-eyes with high color resolution, accompanying with a rainbow-like multicolor change (Scheme 1). We employ alkaline phosphatase (ALP) as a model enzyme because it is often used as an indicator of hepatobiliary and bone disorder, breast and prostatic cancer, and diabetes in clinical diagnostics. Moreover, it is also one of the most commonly used enzyme labels in the bioanalysis. In this work, the ALP hydrolyzes ascorbic acid 2-phosphate (AA-P) into ascorbic acid (AA). Then, the produced AA (as a common reduction reagent in chemical reactions) reduces silver ion to generate a silver nanoshell on the surface of AuNR. This leads to the blue shift of longitudinal LSPR peak of AuNR, accompanying with a perceptible color change from red to orange to yellow to green to cyan to blue and to violet. The change of the color and the longitudinal LSPR peak depends on the amount of the produced silver nanostructure deposited on the AuNR, thus indirectly relying on the ALP activity. By monitoring the change in the color/or the longitudinal LSPR peak, we can (semi-) quantitatively determine the activity of target ALP in real-life biological samples.

2. EXPERIMENTAL SECTION

Material and Reagent. Cetyltrimethylammonium bromide (CTAB) and Tween 20 were purchased from Genview (U.S.A.). Chlorauric acid tetrahydrate (HAuCl₄·4H₂O), silver nitrate (AgNO₃) and bovine serum albumin (BSA) were acquired from Sinopharm Chem. Re. Co., Ltd. (Shanghai, China). Diethanolamine (DEA, Aladdin, China), 1-ascorbic acid (AA, Fluka, U.S.A.), alkaline phosphatase (ALP, Toyobo, Japan), 4-nitrophenyl phosphate disodium salt hexahydrate (pNPP, Alfa Aesar, China), and L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AA-P, Sigma-Aldrich, U.S.A.) was used throughout the study. Goat polyclonal antirabbit IgG antibody (Ab1, Jackson ImmunoResearch Laboratories Inc., U.S.A.), ALP-labeled goat polyclonal antirabbit IgG antibody (ALP-Ab2, Vector Laboratories Inc., U.S.A.), and Rabbit IgG (RigG, Dingguo Biotechnol. Inc., China) were utilized for the development of colorimetric immunoassay. All high-binding polystyrene 96-well single-break strip plates were purchased from Greiner Bio-One (Frickenhausen, 705071, Germany). All other reagents were of analytical grade without further purification. Millipore purification system-based ultrapure water was used in this study (18.2 Ω cm⁻², Milli-Q, Millipore). Human serum specimens derived from Fujian Provincial Hospital, China.

Three types of DEA buffer solutions including 0.1 mol L⁻¹ of pH 7.6 DEA buffer [1.0514 g DEA + 0.0257 g Mg(NO₃)₂·6H₂O], 0.4 mol L⁻¹ of pH 9.8 DEA buffer [4.207 g DEA + 0.0513 g Mg(NO₃)₂·6H₂O], and 1.0 mol L⁻¹ of pH 9.8 DEA buffer [10.514 g DEA + 0.0257 g Mg(NO₃)₂·6H₂O] were prepared by adding the corresponding chemicals in 100 mL distilled water, respectively, and adjusted to the desired pH by using HNO₃. A pH 9.6 carbonate buffer [1.69 g Na₂CO₃ + 2.86 g NaHCO₃] and a 0.01 mol L⁻¹ of pH 7.4 phosphate-
buffered saline [PBS, 2.9 g Na2HPO4·12H2O + 0.24 g KH2PO4 + 0.2 g KCl + 8.0 g NaCl] solution were prepared by adding the corresponding chemicals in 1000 mL distilled water, respectively. The washing and blocking solutions were acquired by adding 0.05% Tween 20 (v/v) and 1.0% (w/v) BSA in PBS, respectively.

Synthesis of Gold Nanorod (AuNR). Gold nanorod (designated as AuNR) was synthesized by using a classical seed-mediated growth method.31−33 Initially, two solutions were prepared as follows: a seed solution including 0.6 mL of 0.01 mol L⁻¹ NaBH₄ (ice-cold), 0.25 mL of 0.01 mol L⁻¹ HAuCl₄, and 9.75 mL of 0.1 mol L⁻¹ CTAB (Note: The solution was quiescently left at room temperature for 2 h before use) and a growth solution containing 40 mL of 0.1 mol L⁻¹ CTAB, 2.0 mL of 0.01 mol L⁻¹ HAuCl₄, 9.75 mL of 0.1 mol L⁻¹ CTAB (Note: The solution was quiescently left at room temperature for 2 h before use) and 200 μL of concentrated HCl, and 0.32 mL of 0.1 mol L⁻¹ AA. Afterward, 200 μL of the seed solution was added quickly into the growth solution and stored overnight at room temperature. Following that, the mixture was centrifuged for 20 min at 7000 g, and the obtained pellet (i.e., AuNR) was suspended into distilled water with an expected optical density of 1.000 ± 0.005 au at 896 nm (Note: During the experiment, the added CTAB mainly acted as a stabilizer, which could prevent the as-synthesized AuNR from aggregation together).18,27 The as-prepared AuNR was characterized by UV−vis absorption spectroscopy, which exhibited the longitudinal and transverse plasmon bands at 896 and 507 nm, respectively.

Monitoring of ALP Activity Using AuNR-Based Colorimetric Assay Protocol. Before measurement, a substrate solution including 200 μL of 10 mmol L⁻¹ AA-P in 0.4 mol L⁻¹ DEA buffer (pH 9.8), 20 μL of 10 mmol L⁻¹ AgNO₃, and 200 μL of AuNR colloids (1.0 au at 896 nm) was initially prepared. Afterward, 10 μL of ALP standards with various activities in the DEA buffer (0.1 mol L⁻¹, pH 7.6) or blank serum sample was added into the substrate solution, and incubated for 60 min at 37 °C. The resulting suspension was monitored, using UV−vis absorption spectroscopy (UV 1102 spectrophotometer, Shanghai Techcomp Co. Ltd., China) within the wavelength range 1100−300 nm.

Monitoring of ALP Activity Using pNPP-Based Assay Protocol. Initially, 10 μL of ALP standards with various activities in 0.1 mol L⁻¹ DEA buffer (pH 7.6) or blank serum sample was added

Figure 1. (A, B) TEM images of AuNR before (A) and after (B) silver deposition. (C, D) EDX spectra of corresponding areas of A, B, respectively (Inserts: the corresponding high-resolution TEM images). (E) Photographs and (F) UV−vis absorption spectra of (a) AuNR, (b) AA-P in 0.4 mol L⁻¹ DEA buffer (pH 9.8), (c) AgNO₃, (d) ALP, (e) AuNR + buffer, (f) AuNR + AA-P + AgNO₃ + buffer, and (g) AuNR + AA-P + AgNO₃ + ALP + buffer.
into 400 μL of 1.0 mol L⁻¹ DEA buffer (pH 9.8) containing 5.0 mmol L⁻¹ PNPP. Then, the resulting mixture was incubated 60 min at 37 °C. After that, UV–vis absorption spectroscopy of the mixture was recorded by using UV 1102 spectrophotometer from 550 to 350 nm.

AuNR-Based Colorimetric Immunoassay Protocol for RlG.

Prior to the colorimetric immunoassay, the capture antibody-functionalized microplate was prepared as follows: 50 μL per well of 10 μg mL⁻¹ Ab, in the carbonate buffer (pH 9.6) was added into the high-binding 96-well single-break strip plate and incubated 12 h at 4 °C. Following that, the Ab-modified microplate was washed by using the washing buffer. 300 μL per well of the blocking buffer was injected in the microplate and incubated for 60 min at 37 °C. During this process, the capture antibody (Ab₁) was immobilized on the single-break strip plate. Afterward, the as-prepared microplate was used for the detection of target RlG. Initially, 50 μL of RlG standards with different concentrations was added into the well by using pipet and then incubated for 60 min at 37 °C. After that, 50 μL of ALP-Ab₂, was then incubated for another 60 min under the same conditions to form the sandwich immunocomplex. Subsequently, 100 μL of 10 mmol L⁻¹ AA-P in 0.4 mol L⁻¹ DEA buffer (pH 9.8), 10 μL of 10 mmol L⁻¹ AgNO₃, and 100 μL AuNR (1.0 μL at 896 nm) were added into the well and reacted for 60 min at 37 °C. The absorbance also increased from 0.4691 to 1.2182. The reason might be the fact that the AA obtained by the hydrolysis of AA-P with the aid of ALP could reduce silver ion to form silver nanoshell on the surface of AuNR.

Further, the formation of silver nanoshell on the AuNR was further confirmed by using TEM. As seen from Figure 1B, the reaction of the AuNR with ALP, AA-P, and AgNO₃ produced rod-like nanostructures. Apparently, the size of the as-produced nanostructures was significantly larger than that of AuNR (Figure 1B vs A). Previous studies have shown that silver colloids were red (photograph a in Figure 1E) with a longitudinal LSPR peak at 896 nm and a transverse one at 403 nm, which also indicated the formation of silver nanostructures after the reaction of AuNR with ALP, AA-P, and AgNO₃. As shown in Figure 1D, the nanoshell on the AuNR originated from the metallic silver as compared to Figure 1C. Moreover, the characteristic absorption peak of silver colloids could be observed at 403 nm, which also indicated the formation of silver nanostructures after the reaction of AuNR with ALP, AA-P, and AgNO₃. As shown in Figure 1F, these results confirmed that the blue shift of the longitudinal LSPR peak of AuNR and the color change of the AuNR solution were attributed to ALP-induced silver deposition on the AuNR.

To further demonstrate our design, other control tests including AuNR + AA-P, AuNR + AgNO₃, AuNR + ALP, AuNR + ALP + AA-P, and AuNR + ALP + AgNO₃ were also carried out at an effective working pH of 9.8 and an effective incubation temperature of 37 °C. Under these conditions, other possible experimental parameters including AA-P concentration, AgNO₃ concentration, DEA concentration, and the deposition time for metal silver should be investigated in detail. In this work, the progression of the colorimetric assay

3. RESULTS AND DISCUSSION

Characteristics and Control Tests for AuNR-Based Colorimetric Assay. In this work, the detectable colorimetric signal mainly derives from the enzyme-induced silver deposition on the surface of the AuNR. One precondition for the development of AuNR-based colorimetric assay was whether the AuNR could be successfully synthesized via the seed-mediated growth method. To demonstrate this point, the morphology of the as-synthesized AuNR was characterized by using transmission electron microscope (TEM, TECNAI G2F20, FEI). As seen from Figure 1A, the as-synthesized nanostructures were well-defined nanorods with a mean length of 55 ± 5 nm and a width of 12 ± 1 nm along the longitudinal axes. Logically, another concern for the AuNR arises to whether the enzyme-catalyzed silver deposition on the AuNR could be smoothly progressed in the presence of ALP, as described in Scheme 1. To clarify this issue, several control tests were implemented under the different conditions by using visual color readout (Figure 1E) and UV–vis absorption spectrophotometer (Figure 1F). The as-prepared AuNR colloids were red (photograph a in Figure 1E) with a longitudinal plasmon peak at 896 nm and a transverse one at 507 nm (curve a in Figure 1F). When 200-μL AuNR (1.0 μL at 896 nm) was dispersed in 200-μL 0.4 mol L⁻¹ diethanolamine (DEA) buffer (pH 9.8), the color was almost the same relative to pure AuNR colloids (photograph e). Moreover, the color of AuNR colloids was not changed even if 200-μL AA-P (10 mmol L⁻¹) and 20-μL AgNO₃ (10 mmol L⁻¹) were added (photograph f). Further, the longitudinal LSPR peaks of AuNR were not shifted nearly (curve f vs curve e vs curve a). When 10-μL ALP (300 μM mL⁻¹), AA-P, and AgNO₃ were introduced into the AuNR colloids, the color of the suspension favorably changed from red to cyan (photograph g), and the longitudinal LSPR peak gradually shifted from 872 to 624 nm (curve g vs curve e) (Note: The absorbance also increased from 0.4691 to 1.2182). The reason might be the fact that the AA obtained by the hydrolysis of AA-P with the aid of ALP could further corroborate that the production of AA by the biocatalytic activity of ALP toward AA-P was the key factor in this work for the reduction of silver ion to generate silver nanoshell on the surface of AuNR, thus leading to the blue shift of the longitudinal LSPR peak and the color change of the AuNR solution, which is in good agreement with previous reports.

Optimization of Experimental Conditions for AuNR-Based Colorimetric Assay. Based on ALP manufacturer suggestion (http://www.toyobo-global.com/seihin/xr/lifescience/products), the ALP experiments should be better carried out at an effective working pH of 9.8 and an effective incubation temperature of 37 °C. Under these conditions, other possible experimental parameters including AA-P concentration, AgNO₃ concentration, DEA concentration, and the deposition time for metal silver should be investigated in detail. In this work, the progression of the colorimetric assay
mainly stemmed from the ALP-catalyzed hydrolysis of AA-P toward the reduction of silver ions. Thus, the concentrations of AA-P and AgNO₃ in the detection solution were expected to affect the formation of silver nanoshell. As seen from Figure 2A and B, the signal increased with the increase of AA-P/AgNO₃ concentration and tended to level off after 10 mmol L⁻¹ AA-P and 10 mmol L⁻¹ AgNO₃. Therefore, 10 mmol L⁻¹ AA-P and 10 mmol L⁻¹ AgNO₃ were used for the colorimetric assay.

Typically, the DEA used in this study not only offers the alkaline environment for the catalytic hydrolysis of ALP toward...
LSPR peak (linear relationship between the blue shifts of the longitudinal increase of ALP activity. The calibration plots displayed a good absorbance of the longitudinal LSPR peak increased with the LSPR peak gradually shifted from 865 to 560 nm, and the ALP with different activities (Figure 3C). The longitudinal LSPR peak gradually shifted from 20 mU mL$^{-1}$ ALP activity below 500 mU mL$^{-1}$ (Note: The basic theoretical analysis of how silver nanoshell influences the LSPR peak and color of the AuNR is described and discussed in the literature). The rainbow-like intensity change in homochromatism (ca. 64 grades). Further, we also investigated the stability of the as-prepared AuNR during a long-time period. When not in use, the as-prepared AuNR was statically placed at room temperature by using CTAB as the stabilizer and measured intermittently toward the same-concentration ALP activity. No significant change in the blue shift was observed after storage for 6 months (Figure S4 in the Supporting Information), indicating that the AuNR could exhibit a long-time stability.

Further, we also investigated the stability of the as-synthesized AuNR during a long-time period. When not in use, the as-prepared AuNR was statically placed at room temperature by using CTAB as the stabilizer and measured intermittently toward the same-concentration ALP activity. No significant change in the blue shift was observed after storage for 6 months (Figure S4 in the Supporting Information), indicating that the AuNR could exhibit a long-time stability.

Monitoring of Clinical Human Serum Samples. To further investigate the application possibility of the AuNR-based colorimetric assay for the ALP determination of clinical human serum samples, 14 serum specimens (gifted from the local Fujian Provincial Hospital) with different ALP activities were used for mass production to measure ALP activity.

AA-P but also is crucial for preventing the formation of the silver hydroxide precipitate under alkaline conditions as shown in Figure 2C, the blue shift in the longitudinal LSPR peak initially increased with the increment of DEA concentration from 0 to 0.4 mol L$^{-1}$, and then decreased. The maximum blue shift occurred at 0.4 mol L$^{-1}$ DEA. Thus, 0.4 mol L$^{-1}$ DEA buffer (pH 9.8) was employed as a substrate buffer for the development of the colorimetric assay.

In addition, the deposition time for silver nanoshell on the AuNR directly affects the change of visible color. As indicated from Figure 2D, the blue shift in the longitudinal LSPR peak increased with the increase in the reaction time and almost reached steady-state conditions after 60 min. Longer reaction time did not cause obvious significant increase in the blue shift. Therefore, a reaction time of 60 min was used for the remainder of the study.

Analytical Performance for AuNR-Based Colorimetric Assay. Under optimal conditions, the sensitivity and dynamic measurement range of the colorimetric assay were evaluated against ALP standards by using gold/silver core/shell nanorod as the color indicator. As seen from Figure 3A and B, the solution presented distinct color changes from red to orange to yellow-green to green to cyan to blue and to violet with a high resolution up to 20 mU mL$^{-1}$ toward ALP activity below 500 mU mL$^{-1}$ (Note: The basic theoretical analysis of how silver nanoshell influences the LSPR peak and color of the AuNR is described and discussed in the literature). The rainbow-like color change could be easily identified by using bare-eyes or analyzed by using a charge-coupled device camera for quantitative analysis via digital imaging because the resolving power of the bare-eyes toward different color change (ca. 10 million color types) is much more sensitive than that of intensity change in homochromatism (ca. 64 grades). Further, we used UV–vis absorption spectra to quantitatively monitor the change of the colorimetric assay in the absorbance toward ALP with different activities (Figure 3C). The longitudinal LSPR peak gradually shifted from 865 to 560 nm, and the absorbance of the longitudinal LSPR peak increased with the increase of ALP activity. The calibration plots displayed a good linear relationship between the blue shifts of the longitudinal LSPR peak ($\Delta \lambda_{\text{max}}$) and ALP activities in the range from 5 mU mL$^{-1}$ to 100 mU mL$^{-1}$ with a detection limit (LOD) of 3.3 mU mL$^{-1}$ ALP based on $3\sigma_{b}$/slope, where σ_{b} was the standard deviation of blank samples (Figure 3D). For comparison, we also investigated the analytical properties of the colorimetric assay for quantitative detection of ALP activity in blank human serum (see Figure S3 in the Supporting Information).

In this case, the LOD was 14.5 mU mL$^{-1}$ ALP, which was higher than that in buffer. Because the threshold of total ALP in human serum is \sim30 mU mL$^{-1}$, the colorimetric assay could meet the requirement of clinical diagnostics of ALP activity in human serum. Although the nanostructures were made of gold and silver, the assay would still be very inexpensive. All the chemicals used in one sample test were less than two cents—US $0.0152 (based on the reagents' cost, please see the detailed calculation process in the Supporting Information). These results indicated that the developed colorimetric assay was a simple, sensitive, equipment-free, and cost-effective method for ALP activity monitoring.

The repeatability and intermediate precision of the colorimetric assay were evaluated by calculating intra/inter-batch coefficients of variation (CVs, $n = 6$). Experimental results indicated that the CVs by using the same-batch AuNR and different-batch AuNR were 2.6%, 3.5%, and 1.3% for the intra-assay, and 6.2%, 5.6%, and 3.8% for the interassay toward 40 mU mL$^{-1}$, 150 mU mL$^{-1}$, and 500 mU mL$^{-1}$ ALP, respectively. The low CVs indicated that the colorimetric assay could be used for mass production to measure ALP activity.

The selectivity of the colorimetric assay was evaluated using common enzymes or substances as competitors, including glucose oxidase (GOx), horseradish peroxidase (HRP), lysozyme (LZM), thrombin (TB), cytochrome c (Cyc), and human IgG (HlgG). As shown in Figure 4A, a significant change in the blue shift was observed only with target ALP relative to the higher interfering components, which revealed that the assay has a good selectivity toward ALP detection.

Further, we also investigated the stability of the as-synthesized AuNR during a long-time period. When not in use, the as-prepared AuNR was statically placed at room temperature by using CTAB as the stabilizer and measured intermittently toward the same-concentration ALP activity. No significant change in the blue shift was observed after storage for 6 months (Figure S4 in the Supporting Information), indicating that the AuNR could exhibit a long-time stability.

Figure 4. (A) Specificity of the colorimetric assay against ALP (150 mU mL$^{-1}$), GOx (1.0 μg mL$^{-1}$), HRP (1.0 μg mL$^{-1}$), LZM (1 μg mL$^{-1}$), TB (1.0 μmol L$^{-1}$), Cyc (5.0 μmol L$^{-1}$), and HlgG (1.0 μg mL$^{-1}$) (Inset: The corresponding photographs), and (B) comparison of the assay results toward ALP in real-life clinical serum specimens using the developed colorimetric assay and the pNPP-based standard method, respectively. Error bar represents the standard deviation ($n = 3$).
were monitored by using the designed assay protocol. Further, the obtained experimental results on the ALP activity in these serum samples were compared with those from the pNPP-based standard assay method. Figure 4B shows the comparative results with these samples between two methods. As analyzed from these experimental data, a highly positive correlation between the two methods was established, with a slope of 1.05 ± 0.07, an intercept of −1.43 ± 8.16, and a correlation coefficient of 0.973, demonstrating that the results obtained from the developed method correlated well with those from the standard ALP assay within the experimental error. These results strongly confirmed that the AuNR-based colorimetric assay was reliable for real-life serum samples detection.

Application of AuNR-Based Colorimetric Assay in the Sandwiched Immunoassay. We further explored and extended the colorimetric assay into other biological analyses by using the ALP as the enzyme linker, for example, enzyme-linked immunosorbent assay (ELISA). As shown in Figure 5A, rabbit immunoglobulin G (RIGG) was used as a model analyte and ALP-labeled anti-RIGG antibody was employed as a detection antibody. As seen from Figure 5B, the visible color of the detection solution also turned from red to orange to yellow to yellow-green and to green with the increase of RIGG concentration. Moreover, the method displayed a high sensitivity with an LOD of 1.5 ng mL⁻¹ (10 pM) RIGG (Figure 5C and D).

4. CONCLUSIONS

In summary, we demonstrated a high-resolution colorimetric assay for simple and sensitive monitoring of ALP activity via enzyme-assisted silver deposition on the AuNR. Compared with the conventional colorimetric assays, this system is inexpensive (~USD $0.0152 for a single test), rapid (relative to commercialized available ELISA, >3 h), portable, and user-friendly without the need of instrumentation. The methodology demonstrated in this work provided a quick and fast assay for researchers and end-users to monitor enzyme activities by judging different colors by bare-eyes detection. This concept can be further explored for quantitative detection of proteins and development of cost-effective detection kits. In view of the simplification, sensitivity, low cost, user-friendliness, and visual readout with bare-eyes, the colorimetric method reported here has the potential to be used by the public for semiquantitative detection.

■ ASSOCIATED CONTENT

* Supporting Information

Additional information as noted in text including the control tests (Figure S1 and Figure S2), analysis of human serum samples (Figure S3), and the stability of the AuNR (Figure S4). This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*Phone: +86-591-2286-6125. Fax: +86-591-2286-6135. Email: dianping.tang@fzu.edu.cn.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Support by the National Natural Science Foundation of China (Grant Nos. 41176079 and 21475025), the National Science Foundation of Fujian Province (grant no. 2014J0105), and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1116) is gratefully acknowledged.

■ REFERENCES

(2) Hunter, T. Protein Kinases and Phosphatases: The Yin and Yang of Protein Phosphorylation and Signaling. Cell 1995, 80, 225–236.

